
Object Detection and Imitation Learning in Duckietown

Suzie Petryk

Team Member: Joe Nechlebla

Abstract

The crucial first step of any autonomous driving

system is to understand the surrounding environ-

ment. In Duckietown, the duckies and other duck-

iebots present hazardous obstacles that the vehicle

must not drive into. Thus, object detection is nec-

essary to prevent collisions. In this work, we train

a YOLO (You Only Look Once) convolutional

neural network for object detection to recognize

duckies and duckiebots. The network achieved a

70% average IOU during validation and demon-

strates real-time detection of close objects on un-

seen data. An extension from prior work on imita-

tion learning is also presented. The CNN models

were unable to generalize well to unseen Ducki-

etown environments, demonstrating the complex-

ity of the imitation learning task. However, train-

ing accuracy improved significantly over time,

suggesting its ability to control a duckiebot in fa-

miliar environments, such as the same lab where

training data was collected.

1. Introduction

Object detection is the task of finding bounding boxes

around predefined objects of interest in an image. There

must be exactly one bounding box around each instance

of an object of interest that appears in the image, and no

bounding boxes anywhere else.

Real-world autonomous driving requires the detection of

a large number of possible objects, including traffic signs,

traffic lights, pedestrians, and other vehicles. Many of these

have a large variability in appearance, especially as weather

conditions or the road location itself change. An object

detection algorithm on real-world vehicles must be robust

to these changes in appearance.

In contrast, the Duckietown environment is much less vari-

able in appearance. While the roadmap, lighting conditions,

and sideline decorations may change, the roads, traffic signs,

duckies, and duckiebots themselves have a fixed design

(Liam Paull & others., 2017). This makes the object detec-

tion task significantly easier. It allows for a much smaller

training set than one needed for real-world driving. This

made it feasible to collect a dataset of Duckietown images

that was small enough to hand-label duckies and duckiebots,

yet large enough to detect most close objects in real time.

The work done in this paper presents a first step1 in an

autonomous driving pipeline for Duckietown created by the

Cornell Autonomous Systems Lab.

The layout of this paper is as follows: Section 2 presents

the methodology for the object detection work. Results of

the training and testing processes are presented in Section

3, followed by a discussion of performance in Section 4.

Because the main project focus throughout this semester

was object detection, it constitutes the bulk of this paper,

followed by Section 6 that describes the extensions on an

imitation learning project started in Fall 2018.

The GitHub repository for the object detec-

tion work described in this report is found here:

https://github.coecis.cornell.edu/jdn64/

duckietown object detection, and

the imitation learning GitHub reposi-

tory containing new extensions is here:

https://github.com/spetryk/imitation-

learning-AI-Driving-Olympics.

1.1. Related Work

Before the use of convolutional neural networks for object

detection, the best approaches that relied on classical com-

puter vision techniques (such as SIFT (Lowe, 2004) and

HOG (Dalal & Triggs, 2005)) seemed to have plateaued

in accuracy on the canonical object detection benchmark

of PASCAL VOC. A 30% jump in mean average precison

(mAP, a commen metric for object detection performance)

was gained in the first application of CNNs to this task

(Girshick et al., 2014). This was the ”Regions with CNN

features” (RCNN) method. First, various region proposal

algorithms are used to extract about 2k possible object re-

gions. A CNN is used to extract a feature vector for each of

these regions, which is then classified with a support vector

1The first step constitutes perceiving the environment, which in
this pipeline includes lane detection (described in a different work)
as well as object detection.
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Figure 1. A sample image from inference on a validation set.

machine (SVM) to give class scores and confidences.

The large per-image computational cost of R-CNN inspired

the creation of Fast R-CNN, in which the CNN was run

on the entire image once, and then proposals were cropped

directly from the resulting feature map (Girshick, 2015).

This process was sped up even more with Faster R-CNN

(Ren et al., 2015), where a small CNN was used for region

proposals. However, the R-CNN family still relies on the

pipeline of region proposals to feature extraction to clas-

sification, which may lead to inference times that are too

long for applications with require fast detection, such as

autonomous driving.

The You Only Look Once (YOLO) method streamlines this

pipeline into a single CNN (Redmon et al., 2016). First, the

image is split up into grid cells. Next, each grid cell predicts

a specified number of bounding boxes, along with class

scores and confidence for each box. Non-max suppression

is then used on the boxes with the highest confidence scores

to output one bounding box per object. The network itself

has 24 convolutional layers followed by 2 fully connected

layers, making its computation time smal enough to be used

for real-time detection.

1.2. Problem Statement

The object detection task in the context of Duckietown is

defined as follows: given an input image from the front-

facing duckiebot camera, output the image coordinates of

bounding boxes that tightly enclose each duckie or duck-

iebot present in the image, and do not appear in the image

where there is no duckie or duckiebot (no false positives).

There must be exactly one bounding box for each duckie or

duckiebot present. Figure 1 presents a sample image from a

validation set showing the bounding box detections along

with confidence scores for each box.

ROS (Quigley et al., 2009) was used to interface software

with hardware on the duckiebot. A Duckietown environment

built by the Cornell Autonomous Systems Lab was used for

gathering data and testing performance.

2. Methodology

2.1. Data Collection

In order to train the network, a training set consisting of im-

ages from the duckietown environment labeled with bound-

ing boxes and classes of objects in each image. Because

there was no pre-existing public dataset of this nature, this

was gathered by hand. The setup for data collection was as

follows: one team member controlled a duckiebot via key-

board, and ran a script that captured rectified images.2 The

other team member moved duckies and a second duckiebot

around the environment to gather objects from a variety

of positions and orientations. 1012 images with duckies

were collected and labeled in this manner, followed by 846

images with both duckies and duckiebots. A labeling tool

for bounding boxes was used to vastly speed up the labeling

process (Tzutalin, 2015). A data augmentation tool3 was

used to create more training data by varying the brightness,

contrast, and color saturation, bringing the total amount of

dataset frames to 4894.

2.2. YOLO Training

A Github repository containing the YOLO architecture and

training pipeline written in C was used in this work.4 The

dataset was split into 3925 training images and 969 vali-

dation images. The network was run with default training

parameters5 and left to train overnight. Analysis of the

training and choice of model is found in Section 4.

2.3. Interfacing with Duckiebot

Figure 2 gives an overview of the flow of code between

the duckiebot providing the images, ROS master providing

data communication, and the GPU/CPU server running the

detection code. After starting the necessary programs on the

duckiebot, the duckiebot would publish rectified images to

a ROS topic. The April tags demo was only needed for the

image rectification. We attempted to calibrate the duckiebot

(Duckiebot 2 in the lab) to output rectified images, although

the homography calibration script threw an error. We con-

tacted the Duckietown coordinators through Slack, who

2”Rectified” here means transforming the raw ”fisheye” image
from the duckiebot into a natural, ”flattened” version. This was
performed with code from the Duckietown Repository.

3https://github.com/mdbloice/Augmentor
4https://github.com/AlexeyAB/darknet
5https://github.coecis.cornell.edu/jdn64/

duckietown object detection/blob/master/

networks/yolo duckie duckiebot detector/

yolov2-tiny-duckie.cfg



Object Detection in Duckietown

notified us that this was a known error with no known solu-

tion yet. Thus, we decided to use the April tags demo as a

way to activate the publishing of rectified images. A python

script was run on an in-lab GPU computer connected to the

same network as the duckiebot. It received the rectified im-

ages fom the ROS topic and passed them through the trained

YOLO model. Next, the image with drawn-on bounding

box predictions along with confidence scores was published

to another ROS topic, allowing us to see the predictions ap-

pear on the duckiebot’s feed (through rqt image view)

in real time. Furthermore, each bounding box published

to a separate ROS topic giving the its image coordinates,

in the form [left x top y width height]. These

bounding box coordinates were used by a next step in the

autonomous driving pipeline which predicted the real-world

location of the detected objects relative to the duckiebot.

3. Results

3.1. Training and Validation Metrics

The Intersection Over Union (IOU) is a common metric

to measure object detection performance. It measures the

fraction overlap of the ground truth bounding box with the

predicted bounding box for a given object. It ranges from

0 to 1, where 1 is a perfect overlap. Figure 3 gives the

average IOU per batch during training. It also gives several

points evaluated on validation data. The YOLO training

framework did not provide functionality to track validation

performance at each batch, and thus the validation points

are much more sparse.

In an attempt to avoid overfitting, we chose the model

trained for 20,000 batches to deploy to the duckiebot, rather

than the final model at 40,000 batches. The few IOU points

show the 20,000-batch prediction with the highest perfor-

mance. However, because the validation data is not given

for each batch, it is difficult to tell if the performance at

20,000 is indicative of a clearly better model. Future work

includes changing the implementation of the model and

training pipeline such that this can be evaluated.

To provide further insight into our model’s performance, we

ran real-time object detection with the duckiebot driving

around the in-lab Duckietown environment. These brand-

new images were clearly never seen by the duckiebot in

training. Figure 4 shows a screenshot from these test images

using model weights from various stages in training: 500

batches, 900 batches, 10,000 batches, and 20,000 batches. A

YouTube video comparing the model predictions over many

frames was also created.6 The following section provides

analysis for these results.

6https://www.youtube.com/watch?v=Lyq2RXXD3

mE&t=47s

4. Discussion

The training IOU values as seen in Figure 3 appear quite

noisy. Nevertheless, there is a clear upward trend as the

training process continues, although the rate of increase

becomes smaller after about 10,000 batches. As mentioned

above, the YOLO training GitHub repository used did not

provide functionality to evaluate validation metrics after

each batch. It only saved the weights after certain batch

numbers. These saved weights were used to evaluate the

validation IOU, included in the plot.

Our testing trials on the duckiebot in real-time (one frame

showed in Figure 4) demonstrated the 20,000-batch model’s

ability to recognize most objects close to the duckiebot.

As can be seen, the detections from 500 and 900 batches

into training do not recognize the duckiebot, whereas the

later ones do. Additionally, the 20,000-batch model has

similar bounding box predictions as the 10,000-batch model,

yet outputs higher confidence scores. Thus, we can see

that choosing the 20,000-batch model outputs bounding

box detections for close objects in the image with higher

confidence than previous models.

When displaying predictions, the threshold for confidence

was set to 0.3. This may seem quite low (the model is

only 30% confident that the bounding box contains the

object), yet worked in our case because there were little

to no false positives. However, there were cases where

the detection failed. Duckiebots were usually able to be

detected from a side view, yet were detected much less often

when viewing from the back (demonstrated in Figure 5a).

Another failure case, shown in Figure 5b, occurred when

the duckiebot was partially occluded and very close to the

camera. It is likely that these failures occurred due to these

duckiebot orientations not appearing often enough in the

training set. With more data representing these orientations,

the detections would likely improve.

The YOLO model was initially ran on the duckiebot itself,

although the limited processing power on the Raspberry Pi

achieved an inference time of only 0.14 frames per second

(meaning that each frame would take about 7 seconds to

make predictions) - too slow for a real-time driving applica-

tion. We considered using a specialized lightweight object

detection network called (Wu et al., 2017a). However, the

SqueezeDet implementation on GitHub7 was specific to the

KITTI dataset and would need nontrivial refining for our ap-

plication. Because it was announced that the use of a GPU

server would be available during the AIDO competition, we

decided that the YOLO model had a fast enough inference

time using a GPU for real-time (30 FPS) predictions and

continued to refine this model.

7https://github.com/BichenWuUCB/squeezeDet
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Figure 2. Flowchart demonstrating interfacing between code running on the duckiebot and GPU/CPU, communicating via ROS.

Figure 3. Training and Validation IOU over model training process.
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(a) Detection after 500 training batches. (b) Detection after 900 training batches.

(c) Detection after 10,000 training batches. (d) Detection after 20,000 training batches.

Figure 4. Detections on test image with YOLO model at various numbers of batches into training process.
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(a) Duckiebot is not detected from back view.

(b) Duckiebot is not detected when partially occluded
and close to camera.

Figure 5. Sample failure cases of duckiebot detection.

5. Future Work

One improvement for future work on this project would be

to find an implementation of YOLO on a more popular ma-

chine learning framework, such as TensorFlow or PyTorch,

or implement it by hand. The repository used in this work,

despite being forked from the original YOLO GitHub, was

poorly documented and not well suited for custom exten-

sions. Even the relatively common practice of validating a

model during training was not offered. Finding or creating a

different implementation would be very valuable for further

work.

As discussed in Section 4, there were several failure cases

where duckiebots were not detected. This could be improved

with the addition of more training data including duckiebots

at various orientations. Additionally, all the duckiebots in

the training set had the white LED lights on. This creates a

dataset bias in which duckiebots with different LED lights

(or none at all) would likely be difficult to detect. The

dataset was also constructed with images only from the Cor-

nell Autonomous Systems Lab Duckietown environment.

Collecting training data from other Duckietowns would

likely improve generalizability. Another method would be

to train in a manner similar to the Falling Things synthetic

dataset for 3D object detection (Tremblay et al., 2018a).

The effectiveness of this method for robotic grasping has

been demonstrated (Tremblay et al., 2018b), although it

required an intensive data collection process of 3D objects

even before passing them to a dataset synthesizer. Future

work on the project described in this paper may include

simplifying the synthetic dataset such that the input would

only require the 3D meshes of duckies and duckiebots found

in the official Duckietown repository.

6. Imitation Learning

6.1. Prior Work

In the Fall 2018 semester, I worked with Jahanvi Kolte on

imitation learning for Duckietown. Imitation learning is a

machine learning process where the model input is an image

from the duckiebot camera, and the model output is the 2

values defining the left and right angular wheel velocities.

Thus, one model goes from perception directly to control.

The final report can be accessed through a shareable Google

Drive link 8. This report details the project setup, data

collection, and data preprocessing. The focus of the prior

work was to compare lightweight neural networks using

shift operations (Wu et al., 2017b) to their convolutional

counterparts on the imitation learning task.

8https://tinyurl.com/AIDO-imitation-learning
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6.2. Recent Extensions

This semester I discovered a bug in the loss calculation

from prior work, in which we had divided the loss by the

number of samples in the batch, although it had already

been averaged. This resulted in much smaller mean squared

error than in reality. The results in this report are calculated

correctly.

Additionally, it was difficult last semester to download video

logs of duckiebot driving for training data. The server host-

ing these videos was unresponsive for file downloads. As

a result, only 5 videos were able to be downloaded. Ear-

lier this spring, I revisited the server and was pleasantly

surprised to find that the server was running again. I down-

loaded more training videos, increasing the data available

from 4,154 frames to 14,098 frames. The training set had

frames from 8 videos, whereas 5 videos were reserved for

the test set. Sample frames from each of these videos are

shown in Figures 8 and 9. These figures provide insight into

the variability between training and testing data used here.

The goal of this work was simply to train a model to gener-

alize to unseen data, rather than last semester’s goal of

lightweight network comparisons. I experimented with

training a ResNet20 and ResNet56 from scratch, in ad-

dition to fine-tuning a ResNet18 pretrained on ImageNet.

The GitHub repository containing my work can be found

at https://github.com/spetryk/imitation-

learning-AI-Driving-Olympics.

6.3. Results

6.3.1. TRAINING FROM SCRATCH

I began by training a ResNet20 from scratch without normal-

izing the input images, results of which are given in Figure

6a. I then found the training dataset channel-wise means

and standard deviations, and trained another ResNet20 with

normalized inputs for comparison (Figure 6b). The normal-

ization may have helped to make the inputs from various

Duckietown environments have less variability. Next, I

was curious as to how a larger model would perform, and

trained a ResNet56 from scratch (Figure 6c). All models

were trained for only 30 epochs as an exploration into initial

performance.

6.3.2. FINE-TUNING PRETRAINED NETWORK

I then explored the use of a Resnet18 pretrained on Ima-

geNet. The pretrained model weights and architecture were

available through the PyTorch framework.9 The first model

trained used a learning rate of 0.01 as initialization to an

Adam optimizer, which was the same setting used for the

9https://pytorch.org/docs/stable/

torchvision/models.html

models in Section 6.3.1. This result is shown in Figure

7b. Because the validation loss had plateaued, I wondered

if a lower learning rate may help avoid a potential local

minimum by taking a different path through the loss sur-

face during training. Figure 7a shows results with an initial

learning rate of 0.001.

6.4. Discussion

The normalization for the Resnet20 models helped to stabi-

lize the training, as the training loss converged much faster,

and the validation loss was less variable. Thus, normaliza-

tion was used for the rest of the models trained. The larger

model, Resnet56, took longer to stabilize error. However,

the training was stopped at 30 epochs, before the training

loss could converge. These initial experiments were explo-

rations into possible models, and therefore the models were

not trained for an extensive amount of time. It would be

valuable to see the performance with longer training times.

Surprisingly, the pretrained models did not perform signifi-

cantly better throughout the fine-tuning process than those

models trained from scratch. The training and validation

accuracies appeared to plateau at similar values: training

loss around 0.007 and validation around 0.030. The lower

learning rate led to noisier validation loss, although did

succeed in achieving a slightly lower validation loss.

In all models, the validation loss plateaued around 0.03

(rad/s)2. Compared to the standard deviation of wheel

velocities over the training set, about 0.20 rad/s (or 0.04

(rad/s)2), this seems high. The training loss, on the other

hand, appeared to be steadily decreasing for all models,

reaching losses below 0.01 (rad/s)2, low compared to the

dataset standard deviation. This result is promising for

autonomous driving in similar environments.

The test data was comprised of 5 driving videos separate

from the 8 driving videos in the training set (there were no

frames in the test and train sets that came from the same

video). Figure 8 shows one frame from each of 8 train-

ing videos, and Figure 9 shows one frame from each of 5

test videos. A noticeable difference in environments can

be observed. This makes the generalization of imitation

learning more difficult. This difficulty is evident in the high

validation loss.

6.5. Future Work

While the models appeared to struggle with generalization

to unseen environments, more rigorous training may still

have the potential to decrease this error. This may include

the further tuning of hyperparameters, change of models

(here, only Resnet was explored, but other CNN architec-

tures such as DenseNet or a custom network may perform

differently), and training for more iterations. Additionally,
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(a) Resnet20 training from scratch with-
out normalization of input images.

(b) Resnet20 training from scratch with
normalization of inputs.

(c) Resnet56 training from scratch with
normalization of inputs.

Figure 6. Results from training Resnet20 and Resnet56 from scratch.

(a) Pretrained Resnet18 fine-tuning with initial learning
rate of 0.001.

(b) Pretrained Resnet18 fine-tuning with initial learning
rate of 0.01.

Figure 7. Results from fine-tuning pretrained Resnet18, varying the learning rate.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 8. Sample frames from 8 different training set videos.
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(a) (b) (c)

(d) (e)

Figure 9. Sample frames from 5 different test set videos.

the ability of the models to reach low training loss after

only 30 epochs is very promising for driving in familiar

environments. Training data can be collected by driving a

duckiebot around with keyboard control in the Duckietown

in the Cornell Autonomous Systems Lab. Then, the test

distribution will be exceedingly similar to training, since the

environment is the same. This has the potential to greatly

help generalization. After this training, experimentation and

control on a physical duckiebot is a promising next step.

7. Real-World Autonomous Driving

Reflection

This project made me better understand the difficulties fac-

ing object detection for real-world autonomous driving.

Even in this very regular Duckietown environment where

the appearance of the objects was constant, there were still

failure cases of object orientations that were not detected.

With infinitely more variability in a real-world setting, de-

tectors must be incredibly robust for reliability in potentially

life-threatening situations. I am curious on the implemen-

tation of object detection on actual autonomous vehicles,

specifically the level of sophistication beyond YOLO and

the importance given to running with low power and fast

inference times.
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